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Introduction

Computer aided drug design has matured into a scientifi-
cally still challenging, but industrially highly applicable field
that has achieved considerable successes [1-4]. This field is
an excellent example for the rapid introduction of novel,
often seemingly abstract scientific methodologies and com-
putational software advances into areas that were earlier
dominated by experimental approaches and the conventional

synthetic methods of chemistry. In this context, the early
theoretical formulation and subsequent computer applica-
tions of molecular similarity represented important advances
[5-10].

The biochemical processes involved in medicinal and
pharmaceutical chemistry are usually very complex, and the
detailed mechanisms of the microscopic chemical processes
at the level of actual motions and rearrangements of indi-
vidual molecular fragments are very seldom known through-
out the entire process of drug action. Whereas the ultimate,
detailed understanding of drug action would require the
knowledge of such details, contemporary theoretical ap-
proaches to drug design usually set a more modest goal: the
identification of the main active centers and the required
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shape and electronic features of pharmacologically signifi-
cant molecules. These features often have roles on several
levels: at the level of actual, biochemical interactions with a
specific target, generating the essence of the drug’s activity,
and also on the level of the processes required for the drug
molecules to reach these targets. In all of these phases, the
shapes of the molecules are of special importance.

A thorough approach to these problems very rapidly leads
to some of the most interesting, and rather fundamental prob-
lems of contemporary biochemistry. On the actual, molecu-
lar level, all properties of molecules are fully determined by
the electron density distribution, that is, by the electron den-
sity charge cloud surrounding the atomic nuclei present in
the molecule. A molecule contains only positively charged
atomic nuclei and the negatively charged electron density
cloud; clearly, there is simply no other material present in a
molecule that could possibly contain any information about
the molecule. Furthermore, from the way the electronic charge
cloud becomes dense in the vicinity of various nuclei it is
possible to identify each nucleus; consequently, the electronic
charge cloud alone already contains all information about
the molecule. How and why a molecule behaves, interacts,
and reacts the way it does are fully encoded in the shape of
its fuzzy electron density cloud [11,12].

This realization has importance in highly applied areas,
such as pharmaceutical chemistry and the study of drug ac-
tion, but it also connects these applied fields to some of the
fundamentals of theoretical chemistry, as it is well-founded
in rigorous quantum mechanics. The essence of this idea has
been formulated as the celebrated Hohenberg-Kohn theorem
[13] of density functional theory [14], only seemingly re-
moved from the medicinal aspects of chemistry. According
to this theorem, the ground state electron density (in the non-
degenerate cases) fully determines the energy of the mol-
ecule [13]. In fact, all other ground state properties of the
molecule are also determined by the electron density. It is
not surprising then, if in a series of similar molecules, vari-
ous calculated electron density properties show excellent
correlations with some biochemical activities.

Computational approaches to drug design have their foun-
dations in the correlations of computed and experimentally
determined properties of molecules. The computed proper-
ties have a better chance of representing reality if they are
based on a more rigorous theory; modern quantum chemistry
represents such a theory, where many molecular properties
can now be computed with an accuracy competing with or
even surpassing the accuracy of experimental measurements
[15]. Whereas the most accurate theoretical results are typi-
cally available mostly for small molecules, nevertheless, re-
cent advances in the quantum chemistry of medium and large
size molecules, including ab initio quality electron density
computations for proteins [16-18] and the ADMA macro-
molecular density matrix approaches [19-22], suitable for the
computation of forces acting on individual nuclei within a
protein [22], have provided a new motivation for quantum
chemistry computational approaches to drug design.

Theoretical chemistry basis of advanced computer
modeling of molecules

Advanced molecular modeling approaches that are able to
take advantage of the unprecedented development of compu-
ter hardware experienced in the recent decade are based on a
thorough theoretical foundation provided by quantum chem-
istry. A well-established theoretical basis in such applied fields
as drug research is no longer an unnecessary luxury; in fact,
many theoretical results, which decades ago served only as
guidelines or broad framework for the experiments in ap-
plied fields, are now becoming readily applicable for the
experimentalists. Theoretical methods, implemented as com-
puter programs [15,23-26], complement the experimental
studies, in fact, these computer programs have become ver-
satile instruments, tailor-made for the given application.
Theory and experiment both benefit from this new scientific
framework, since theories now can be tested easily against
new experimental results, and experiments benefit from the
computational techniques, which provide new tools for both
interpretation and validation.

It is perhaps not surprising that advanced computational
methods originally developed for small molecules are often
employed for the study of pharmaceutically significant mol-
ecules. The transfer of methodology between different disci-
plines has accelerated in recent years, and the computational
techniques of drug design increasingly rely on sophisticated
and theoretically well established methodologies of compu-
tational quantum chemistry.

Many of the currently used quantum chemistry approaches
are based on the determination of the molecular wavefunction,
by solving (at least in an approximate sense) the fundamen-
tal equation of quantum chemistry, the molecular Schrödinger
equation:

HΨ = EΨ (1)
Figure 1 Images of the ab initio quality 0.1 a.u. and 0.01
a.u. molecular isodensity contours (MIDCOs) of the Proto-
Oncogene Tyrosine Kinese Protein 1ABL, computed by the
MEDLA method.
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Here the standard notation is used, where H is the mo-
lecular Hamilton operator, that is in fact a complicated set of
mathematical manipulations to be carried out on the molecu-
lar wavefunction Ψ (a rather complicated function), that con-
verts Ψ  into a multiple EΨ of itself, where the quantity E is
the energy of the molecule. This description of the molecular
Schrödinger equation is deceptively simple and hides the fact
that the actual solution of this equation using sufficiently
accurate approximate methods typically involves very com-
plex computations, often including several millions of inte-
grations. The development of a system of suitable computer
programs for these calculations, such as the GAUSSIAN pro-
grams pioneered by Pople and coworkers [24], has taken many
years by a large number of computational chemists. These
computer programs are among the major achievements of
modern theoretical chemistry.

In an LCAO (linear combinations of atomic orbitals) rep-
resentation of the molecular wavefunction Ψ, the actual com-
putation involves the determination of the relative contribu-
tions of various atomic orbitals to the molecular wavefunction
Ψ.

If n is the total number of atomic orbitals, if r denotes the
three-dimensional position vector variable, and if one denotes
the i-th atomic orbital by ϕi(r) (i = 1,2,...,n), then the set {ϕi(r)}
of functions is the molecular basis set for the given expan-
sion of the molecular wavefunction Ψ. The relative weights
of the contributions of the various basis functions determine
the so-called density matrix P. Within the LCAO framework,
most molecular properties can be calculated from the den-
sity matrix P, and most of the chemically relevant informa-
tion present in the molecular wavefunction Ψ can also be
represented by the density matrix P.

Using the density matrix and the molecular basis set
{ ϕi(r)}, an important property, the electronic density ρ(r) of
the molecule can be computed at any location r by the sim-
ple formula
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Since the actual shape of the molecule is in fact the shape
of the fuzzy electron density cloud, the computed electronic
density has a primary role in molecular shape analysis, and
the fuzzy „body“ of the electronic charge distribution is well
described by the function ρ(r).

The computational approach of the standard quantum
chemistry molecular orbital framework, well represented by
the programs included in the GAUSSIAN system [24], is suit-
able for the study of relatively small molecules. When using
such ab initio computer programs, however, one faces severe
difficulties if large molecules are the subjects of studies.

The usual implementation of the ab initio method for the
generation of molecular wavefunctions suffers from a seri-
ous limitation: as the size of the molecules increases, the
computer time requirements eventually grow with the fourth
power of the molecular size (the number of electrons). For
example, the computation of five times as large molecule
requires 54, that is, 625 times more computer time. This rapid

increase of time requirement practically excludes proteins
and other large molecules from conventional quantum chem-
istry studies: such computations could require decades of
computer time on the fastest computers, consequently, the
conventional computational methods on the ab initio level
are not applicable for truly large molecules.

It is possible, however, to circumvent these computational
difficulties, using some of the more recently introduced meth-
odologies involving additive, fuzzy electron density fragments
(the AFDF approach [16-22]), where the electron density of
the macromolecule is represented either numerically [16-18],
or by a macromolecular density matrix P [19-22]. These
methods are discussed briefly in the next section.

Additive, Fuzzy Electron Density Fragmentation (AFDF)
methods for the computation of macromolecular
electron densities and other molecular properties

Recently, a family of new techniques has been introduced
based on the additive, fuzzy density fragmentation (AFDF)
principle of molecular electron densities. The original ver-
sion of these AFDF approaches, motivated by the early atomic
charge computation scheme of Mulliken, and called the
Mulliken-Mezey approach [19], is the basis of the numerical
Molecular Electron Density Loge Assembler (MEDLA)
method of Walker and Mezey [16-18] and the Adjustable
Density Matrix Assembler method of Mezey [19-21]. The
AFDF approach has been applied for a variety of large mol-
ecules, including proteins [16-18,21], and is also extended to
the computation of macromolecular forces [22], that is, to
the computation of the forces acting on individual nuclei
within a macromolecule controlling both local vibrations and
conformational motions, such as protein folding [22].

The general description of the essence of the AFDF scheme
can be given using the concept of membership functions of
nuclei within various molecular fragments. For this purpose,
the family of all nuclei of the given molecule is subdivided
into m mutually exclusive groups,

f1, f2, . . . , fk, . . . fm (3)

each such group fk of atomic nuclei serving as a set of „an-
chor points“ for a fuzzy electron density ρk(r) contribution of
the corresponding fuzzy fragment Fk, one electron density
function of a fragment for each of the m groups of nuclei:

ρ1(r), ρ2(r), . . . , ρk(r), . . . ρm(r) (4)

and

F1, F2, . . . , Fk, . . . Fm (5)

respectively.
If mk(i) denotes the membership function of atomic or-

bital ϕi(r) in the set of orbitals centered on a nucleus of nu-
clear subfamily fk of electron density fragment Fk, where
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mk(i) =
1 if the atomic orbital ϕi(r) is centered

on any one of the nuclei of subfamily fk,

0 otherwise, (6)

then the n × n AFDF density matrix Pk for the k-th electron
density fragment Fk of the Mulliken-Mezey fuzzy fragmen-
tation method is defined in terms of the matrix elements Pk

ij
as

Pk
ij = 0.5 [mk(i)+ mk(j)] Pij (7)

More general fragmentation schemes have also been pro-
posed [19] that can be expressed in terms of the membership
function of Eq. (6) as

Pk
ij = [mk(i) wij  + mk(j) wji ] Pij (8)

In the general expression of equation (8), the weighting
factors wij  and wji are constrained:

wij + wji = 1 (9)

This condition is required for additivity.
In the case of the original and simplest Mulliken-Mezey

AFDF scheme, one takes

wij = wji  = 0.5 (10)

The AFDF scheme, briefly outlined above, provided the
first method that could be applied successfully for the calcu-
lation of ab initio quality electron densities of natural prod-
ucts including taxol, and macromolecules such as proteins
[16-22].

A theorem on the information content of molecular
fragments and the �holographic� property of molecular
electron density clouds

In molecular modeling, the information content of various
molecular models is an important, limiting aspect. Clearly,
very little useful result can be hoped from an oversimplified
model of poor information content. The molecular formula,
and even the stereochemical structural formula of molecules
can be characterized by a very limited set of numbers (for
example, by 3N nuclear coordinated for a molecule of N nu-
clei), and it is, perhaps, too optimistic to hope that such a
small set of numbers could efficiently convey the very com-
plex nature and behavior of molecules involved in pharma-
ceutical activity. Whereas the nuclear arrangement of mol-
ecules provides a very useful insight, and in a complex man-
ner implies strong constraints on the electron density, never-
theless, it is clear that it is the molecular electron density
cloud that provides the complete information.

However, one may approach the problem of molecular
information from a different perspective, and there is a valid

question to raise: how much information is present in the
electron density of local functional groups, or in more gen-
eral terms, can one deduce conclusions concerning the com-
plete molecule if one studies only a local molecular moiety,
such as a molecular fragment?

A simple and perhaps surprising answer to this question
is provided by a recently proven theorem, the Holographic
Electron Density Theorem [27]. Some of the consequences
of this theorem have fairly fundamental implications for
molecular modeling [27-30]. According to this theorem, any
small, positive volume local region of a complete,
boundaryless electron density cloud of a molecule (in a
nondegenerate electronic ground state) contains the complete
information about the entire electron density, hence, any such
local region of the electron density cloud completely deter-
mines all molecular properties [27]. This theorem represents
an improvement on the Hohenberg-Kohn theorem [13], since
there is no need for the complete electron density to deter-
mine the molecular energy and other properties, already a
small piece of the electron density cloud is sufficient [27].

In other words, molecular fragments, such as individual
functional groups are always influenced in a significant way
by the rest of the molecule, to such an extent that the induced
local changes in the fragment are fully characteristic to the
molecule they belong, and the entire molecular information
is contained within the fragment!

This result has fundamental implications in the context of
molecular modeling involving a series of molecules with simi-
lar pharmacological activity. The holographic electron den-
sity theorem provides assurances that by studying local mo-
lecular regions, even regions that are perhaps not directly
involved in a major way with the given type of pharmaco-
logical activity, it should be possible, at least in principle, to
find correlations between local features of the electron den-
sity clouds and the experimentally determined descriptors of
the pharmacologically relevant biochemical processes [28,30].

Shape analysis and similarity measures of molecular
electron density clouds

Molecular similarity is a fundamental concept of central role
in computer aided drug design [5-11,31-50]. The analysis of
global and local shape of the electron density clouds can re-
veal important clues concerning a variety of molecular prop-
erties. Specifically, the global and local similarity of mol-
ecules can be expressed and numerically characterized by
precisely defined shape-similarity measures based on the
mathematical representation of computed molecular electron
densities [7-9,11].

The detailed computer representations of electronic charge
densities, now available for both small and large molecules,
provide a systematic framework for modeling and understand-
ing molecular behavior. These computational methods serve
as a set of versatile tools for the determination of correla-
tions between well-defined electron density shape features
obtained by computations and the experimentally measured
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levels of some specified biochemical activity. If such corre-
lations are determined and verified, then electron density
shape analysis can be used not only in an interpretative way
but also in a predictive sense. By computing and analyzing
the relevant shape features of the electron densities of a se-
ries of potentially active molecules, even if these molecules
have never been synthesized, one is able to use such correla-
tions for estimating their levels of biochemical activity.

Whereas such theoretical predictions are certainly not
expected to replace eventual experiments, and usually serve
only as guidelines, nevertheless, by identifying promising
candidates within the series of new molecules, and also by
identifying those molecules which are very unlikely to show
significant levels of activities, the electron density based
screening is a powerful selection tool. Indeed, the number of
molecules that are suggested for the eventual, often rather
expensive synthesis and subsequent experimental tests can
be reduced substantially.

Among the molecular shape analysis techniques, those
relying on the molecular electron density are of special sig-
nificance. The formal description of the topological shape
group methods (SGMs), as applied to the shape characteriza-
tion and shape similarity analysis of molecular electron den-
sity clouds has been the subject of several detailed reviews
[11,44-47]. Here we shall describe only a short summary of
the methodology.

The starting point of such analysis is the computation of
electron densities of the given molecules for a family of rel-
evant nuclear arrangements. If for one such conformation the
nuclear arrangement (or, as it is often called, the nuclear con-
figuration) of a molecule M is denoted by K, and if an elec-
tron density threshold a is specified, then a molecular
isodensity contour, MIDCO G(K,a) of M is, by definition,
the collection of all those points r of the three-dimensional
space where the electron density ρ(K,r) of the molecule M of
the given conformation K is equal to the selected threshold
value a:

G(K,a) = { r : ρ(K,r) = a } (11)

For each such MIDCO, the associated density domain
DD(K,a) is defined as the collection of all points r of the
three-dimensional space where the electron density ρ(K,r) of
the selected molecule M is greater than or equal to the thresh-
old a:

DD(K,a) = { r : ρ(K,r) = a } (12)

In fact, the MIDCO G(K,a) is the actual boundary surface
of the corresponding density domain DD(K,a).

Density domains and MIDCO surfaces provide a simple
quantum chemical definition for local molecular moieties
usually involved in a given type of chemical reaction. Ac-
cording to this definition, an additive fuzzy electron density
fragment (AFDF) associated with a family of nuclei fk, is by
definition a quantum chemical functional group [46,48,50] if
there exists some density threshold value a such that a MIDCO
G(K,a) of the given density threshold separates this nuclear

family fk from the rest of the nuclei of the molecule. One
may regard the regions within this MIDCO G(K,a) of func-
tional group electron density as the extent of ”limited au-
tonomy” of the given functional group within the molecule
M.

Such a limited autonomy and separate identity of func-
tional groups within molecules are well reflected in this defi-
nition, and the same principle of MIDCO analysis can be
applied to the limited autonomy and identity of two mol-
ecules placed next to each other. If two different molecules
are placed within a short distance of one another, then the
existence of some MIDCOs separating the nuclei of the two
molecules indicate the autonomy and separate identity of these
molecules. When comparing molecule pairs in close prox-
imity and functional groups within a single molecule, an
important difference is the actual range of values for the den-
sity thresholds along the relevant MIDCOs, which are usu-
ally much smaller for two separate molecules.

One advantage of this quantum chemical definition of func-
tional groups is the fact that the objects so defined are fully
determined by the electron density itself, and the definition
does not involve unreliable chemical intuition or individual
bias.

The actual values of the thresholds a, which correspond
to MIDCOs of functional groups, usually fall within a lim-
ited range of electron density. This range is called the ”Func-
tional Group Range”, and several properties associated with
this density range have been studied [11].

The essence of the topological shape analysis method of
molecular electron densities, called the Shape Group Method,
SGM, is the evaluation of local curvature properties of
MIDCOs in order to characterize and classify shape [11]. In
fact, the Shape Group Method is a general topological shape
analysis technique of any almost everywhere continuously
differentiable three-dimensional function; in the case of mol-
ecules, SGM is applied to complete, three-dimensional fuzzy
molecular electron densities.

Whereas the general SGM method involves some of the
special methods of topology [11], the main ideas of the method
can be described in simple terms. In the application of SGM
to molecular electron densities ρ(K,r), the local curvatures
of a range of MIDCOs G(a) are compared to a range of refer-
ence curvatures b.

The algorithm of topological shape description using the
simplest SGM approach consists of several steps:

(i) A range of electron density thresholds a and a range
of reference curvature values b are selected.

(ii) For each MIDCO G(K,a) of density threshold a within
the specified range, G(K,a) is partitioned into local curvature
domains relative to each reference curvature b within the
corresponding range.

In order to generate this partitioning, the local curvature
at each point r of the MIDCO surface G(K,a) is characterized
by a local curvature matrix called the local Hessian matrix,
by comparing the local canonical curvatures (the eigenvalues
of the local Hessian matrices) at each point r to the reference
curvature b. Each point r of G(K,a) is assigned to either a
D0(b), or a D1(b), or a D2(b) curvature domain, if none, or



J. Mol. Model. 2000, 6 155

one, or two (respectively) of the eigenvalues of the local Hes-
sian matrix at point r are smaller than the curvature param-
eter b. In practical computations, only a finite number of (a,b)
pairs of values are considered.

Note that the three types of local curvature domains, D0(b),
D1(b) or D2(b), indicate whether the MIDCO G(K,a) is con-
vex, concave, or of the saddle type, respectively, relative to
the actual curvature b.

(iii) The step of curvature domain identification is fol-
lowed by a truncation of MIDCO surfaces for each (a,b) pair
of parameters by removing all curvature domains Dµ (b) of a
specified type µ (in most application the type µ = 2) from the
MIDCO G(K,a). Note that a truncated surface G(K,a,µ) is
obtained for each (a,b) pair.

An important aspect of the method is the fact that for the
whole range of parameter values a and b of each molecule
M, only a finite number of topologically different truncated
surfaces are obtained. (This holds in all except some degen-
erate cases.)

(iv) The next step is the determination of the shape groups
of the molecular electron density, that is, the zero-, one-, and
two-dimensional algebraic homology groups of the truncated
MIDCO surfaces. In molecular electron density analysis in
three dimensions based on two-dimensional MIDCO surfaces,
there is one family of shape groups for each of these dimen-
sions of zero, one, and two, that is, there are three types of
shape groups, one for each of the dimensions zero, one, and
two. The zero-, one-, and two-dimensional shape groups are
denoted by H0µ (a,b), H1

µ (a,b), and H2µ (a,b), respectively,
where the letter H refers to the fact that these groups are the
homology groups of truncated MIDCO surfaces. In these
notations, the dimensions 0, 1, and 2, the truncation type µ,
the electron density threshold a, and the reference curvature
parameter b are also specified. One should note that within
each topological equivalence class of these surfaces, the shape
groups are topological invariants, implying that these groups
convey some essential information about the topology of
molecular shape.

(v) In the next step simple, numerical descriptors of the
Shape Groups are determined. The shape groups themselves
can be characterized by numbers and among these numbers
the Betti numbers are of special importance.

The zero-, one-, and two-dimensional Betti numbers are
the ranks of the zero-, one-, and two-dimensional homology
groups, H0

µ (a,b), H1
µ (a,b), and H2µ (a,b), respectively. The

Betti numbers associated with the shape groups are denoted
by b0

µ (a,b), b1µ (a,b), and b2µ (a,b), where, similarly to the
shape groups, the dimensions 0, 1, and 2, the two parameters
a and b, as well as the truncation type µ are specified. The
Betti numbers generate a set of numerical shape descriptors
for the entire range of MIDCOs G(K,a) of the given mol-
ecule M (of a specific nuclear conformation K).

(vi) The final step is the construction of a numerical shape
code from the computed Betti numbers.

In a typical application of the Shape Groups, the distribu-
tion of various values of Betti numbers bp

µ (a,b) as a function
of the density threshold a and curvature parameter b is de-

scribed by various (a,b)-maps. In most practical applications,
these maps can be formulated as matrices: the shape matri-
ces M(a,b) are discretized versions of (a,b)-maps correspond-
ing to the cases where only a finite number of thresholds are
considered, for example, if na density threshold values a and
nb reference curvature values b are used.

The shape matrices M(a,b) can be regarded as numerical
shape codes for the molecules, where the matrix elements
can be listed either in the original matrix form or as a vector.
Since the total number of elements in the shape code matrix
M(a,b) is

t = nanb (13)

the corresponding shape vector is also t-dimensional.
By applying the same Shape Group Method to fuzzy mo-

lecular electron density fragments, to the AFDF components
of molecular electron densities, the local shape analysis can
reveal important trends which often correlate with biochemi-
cal activity. An essential aspect of the SGM and related ap-
proaches is the fact that they are equally applicable to the
fuzzy electron density clouds of complete molecules and to
local, fuzzy electron density fragments, hence these methods
are suitable for ”zooming in” to the biochemically relevant
local regions of molecules.

The shape codes, once determined, can be used for shape
comparisons between molecules, or between molecular frag-
ments. A new comparison does not require the recalculation
of the shape groups of a molecule or molecular fragment al-
ready determined; for each new comparison only the shape
codes are used and compared, that results in considerable
savings of computer time. The shape codes of molecules and
molecular fragments can be stored in various data banks and
re-used when needed.

The comparison of shape codes can be formalized in terms
of numerical similarity measures.

For any two molecules or molecular fragments A and B,
the quantity m[M(a,b),A, M(a,b),B] is defined as the number of
matches between corresponding elements in the two shape
code matrices M(a,b),A and M(a,b),B, of objects A and B, respec-
tively.

The shape-similarity measure s(A,B) defined as

s(A,B) = m[M(a,b),A, M(a,b),B] / t (14)

expresses the similarity of the shapes of the two fuzzy elec-
tron density clouds A and B. Note that, in most applications
the range of parameters a and b stretches over several orders
of magnitudes and in such cases a logarithmic representation
(log(a),log(b)) is used for the maps of these parameters [11].

It has been shown [11] that as a consequence of the nature
of parameters a and b in the shape map representations, local
shape complementarity can also be evaluated using essen-
tially the same methodology. If the shape map (a,b) of one
object, say object A is centrally inverted, resulting in a shape
map (a*,b*), then the formal shape similarity measure

s*(A,B) = m[M(a*,b*),A, M(a,b),B] / t (15)
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is in fact a shape complementary measure between objects A
and B. This is a simple consequence of the fact that
complementarity involves a match of low electron density of
object A with high electron density of object B, furthermore,
a negative local curvature of object A with a positive curva-
ture of object B, and vice versa. This pairing is ensured by a
central inversion of one of the (a,b) maps. Note that, in
complementarity analysis based on such inverted shape maps,
one no longer uses logarithmic representations.

Applications

The applications of detailed electron density shape analysis
and similarity evaluation in the study of biochemical activi-
ties of various molecules are numerous. Here we shall pro-
vide only a brief summary of these results and some of the
literature references involving applications of various relevant
topological shape analysis methods [17,18,20,49,51-66].

Shape analysis studies of some macromolecules, includ-
ing proteins, were the very first to derive high accuracy, quan-
tum chemistry quality electron densities for proteins and for
drug molecules such a taxol [17,18,20,55], and for the con-
struction of efficient lipophilicity potentials [49,62]. Simi-
larity approaches and an adaptation of the holographic elec-
tron density analysis provided excellent correlations between
computed molecular features and experimentally measured
optical activities in some chiral compounds [66]. The shape
group methods have been applied successfully in a predic-
tive sense to derive toxicity relations in a series of studies
[61,63-64], and to analyze some prototype molecules in drug
design applications [58-60].

Summary

Modern computer aided drug design approaches can take full
advantage of the recent breakthroughs in computational quan-
tum chemistry. Advances in the actual computation of elec-
tron densities of both small and large molecules provide the
means to determine the source material for the molecular
interpretation and various characterizations of molecular
shapes. The novel methodologies for the shape analysis of
both global and local electron density contributions are espe-
cially suitable for the study of correlations between shape
features and experimentally measured biochemical activities.
These correlations can be used in an interpretative manner if
one is interested in studying the mechanistic aspects of drug
action (these approaches, however, usually do require some
knowledge about the actual receptors), or on a purely corre-
lation basis for predictive purposes (this approach is applica-
ble even if very little or no knowledge is available about the
actual biochemical mechanism). In either way, the electron
density approach to drug design is a promising field, moti-
vated by the simple fact: the electron density contains all
information about a given molecule.
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