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Abstract Understanding the molecular basis of drug action and exploring the chemical interactions
involved in the complex processes of drug delivery are among the most important goals of contempo-
rary drug design. Thenajor recent advances in the detailed, mechanistic interpretation of molecular
interactions, the global and local shape analysis of electron density clouds making up the actual fuzzy
bodies of molecules, novel similarity and complementary measures, the detailed and accurate compu-
tational visualization techniques of molecular level ,Computational Microscopy*, the advances in com-
puter modeling of conformational processes and chemical reactions of drug molecules, the computer
aided design of molecular templates fitting various receptor sites are among the powerful tools of
computer aided drug discovery. In this contribution some of the latest advances are reviewed.

Keywords Theoretical drug design, Computational microscopy, Molecular electron density shape
analysis, Similarity and complementary measures

synthetic methods of chemistry. In this context, the early
theoretical formulation and subsequent computer applica-

i i ] ~_tions of molecular similarity represented important advances
Computer aided drug design has matured into a scientifirs_1 7.

cally still challenging, but industrially highly applicable field ~ The biochemical processes involved in medicinal and
that has achieved considerable successes [1-4]. This field harmaceutical chemistry are usually very complex, and the
an excellent example for the rapid introduction of novel,getajled mechanisms of the microscopic chemical processes
often seemingly abstract scientific methodologies and comat the level of actual motions and rearrangements of indi-

putaltional software' advances into areas that were ea}rlle‘;idua| molecular fragments are very seldom known through-
dominated by experimental approaches and the conventiong|;; the entire process of drug action. Whereas the ultimate,
detailed understanding of drug action would require the
knowledge of such details, contemporary theoretical ap-
- proaches to drug design usually set a more modest goal: the
Dedicated to Professor Paul von Ragué Schleyer on the ogeentification of the main active centers and the required
casion of his 70birthday
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shape and electronic features of pharmacologically signifi- Computational approaches to drug design have their foun-
cant molecules. These features often have roles on seveasibns in the correlations of computed and experimentally
levels: at the level of actual, biochemical interactions withdetermined properties of molecules. The computed proper-
specific target, generating the essence of the drug’s activitgs have a better chance of representing reality if they are
and also on the level of the processes required for the dpaged on a more rigorous theory; modern quantum chemistry
molecules to reach these targets. In all of these phasesrepeesents such a theory, where many molecular properties
shapes of the molecules are of special importance. can now be computed with an accuracy competing with or
A thorough approach to these problems very rapidly leaglgen surpassing the accuracy of experimental measurements
to some of the most interesting, and rather fundamental priits]. Wheeas the most accurate theoretical results are typi-
lems of contemporary biochemistry. On the actual, moleaally available mostly for small molecules, nevertheless, re-
lar level, all properties of molecules are fully determined lmgnt advances in the quantum chemistry of medium and large
the electron density distribution, that is, by the electron desize molecules, includingb initio quality electron density
sity charge cloud surrounding the atomic nuclei presentcdomputations for proteins [16-18] and the ADMA macro-
the molecule. A molecule contains only positively chargedolecular density matrix approaches [19-22], suitable for the
atomic nuclei and the negatively charged electron densitymputation of forces acting on individual nuclei within a
cloud; clearly, there is simply no other material present irpeotein [22], have provided a new motivation for quantum
molecule that could possibly contain any information aboctemistry computational approaches to drug design.
the molecule. Furthermore, from the way the electronic charge
cloud becomes dense in the vicinity of various nuclei it is
possible to identify each nucleus; cqnseque;ntly, the.eleCtmﬂi%oretical chemistry basis of advanced computer
charge cloud alone already contains all information abou deli £ molecul
the molecule. How and why a molecule behaves, interaé‘t'g, eling ot molecules
and reacts the way it does are fully encoded in the shape of )
its fuzzy electron density cloud [11,12]. Advanced molecular modeling approaches that are able to
This realization has importance in highly applied aredgke advantage of the unprecedented development of compu-
such as pharmaceutical chemistry and the study of drug tgghardware experienced in the recent decade are based on a
tion, but it also connects these applied fields to some of Agrough theoretical foundation provided by quantum chem-
fundamentals of theoretical chemistry, as it is well-foundéry- A well-established theoretical basis in such applied fields
in rigorous quantum mechanics. The essence of this idea&®§rug research is no longer an unnecessary luxury; in fact,
been formulated as the celebrated Hohenberg-Kohn theof8afly theoretical results, which decades ago served only as
[13] of density functional theory [14], only seemingly reguidelines or broad framework for the experiments in ap-
moved from the medicinal aspects of chemistry. Accordifgjed fields, are now becoming readily applicable for the
to this theorem, the ground state electron density (in the nBkPerimentalists. Theoretical methods, implemented as com-
degenerate cases) fully determines the energy of the niiter programs [15,23-26], complement the experimental
ecule [13]. In fact, all other ground state properties of tRdies, in fact, these computer programs have become ver-
molecule are also determined by the electron density. I8@file instruments, tailor-made for the given application.
not surprising then, if in a series of similar molecules, varfheory and experiment both benefit from this new scientific

ous calculated electron density properties show excell&igmework, since theories now can be tested easily against
correlations with some biochemical activities. new experimental results, and experiments benefit from the

computational techniques, which provide new tools for both
interpretation and validation.

It is perhaps not surprising that advanced computational
methods originally developed for small molecules are often
employed for the study of pharmaceutically significant mol-
ecules. The transfer of methodology between different disci-
plines has accelerated in recent years, and the computational
techniques of drug design increasingly rely on sophisticated
and theoretically well established methodologies of compu-
tational quantum chemistry.

Many of the currently used quantum chemistry approaches
are based on the determination of the molecular wavefunction,
by solving (at least in an approximate sense) the fundamen-
tal equation of quantum chemistry, the molecular Schrédinger
equation:

Figure 1 Images of theab initio quality 0.1 a.u. and 0.01

a.u. molecular isodensity contours (MIDCOs) of the Prott#W = EW 1)
Oncogne Tyosine Kinese Protein 1ABL, computed by the

MEDLA method.
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Here the standard notation is used, where H is the nrerease of time requirement practically excludes proteins
lecular Hamilton operator, that is in fact a complicated setanid other large molecules from conventional quantum chem-
mathematical manipulations to be carried out on the molegatry studies: such computations could require decades of
lar wavefunctiort¥ (a rather complicated function), that coneomputer time on the fastest computers, consequently, the
verts¥ into a multiple & of itself, where the quantity E isconventional computational methods on e initio level
the energy of the molecule. This description of the molecubae not applicable for truly large molecules.

Schrédinger equation is deceptively simple and hides the factt is possible, however, to circumvent these computational
that the actual solution of this equation using sufficienttiifficulties, using some of the more recently introduced meth-
accurate approximate methods typically involves very comwdologies involving additive, fuzzy electron density fragments
plex computations, often including several millions of intéthe AFDF approach [16-22]), where the electron density of
grations. The development of a system of suitable computes macromolecule is represented either numerically [16-18],
programs for these calculations, such as the GAUSSIAN poo-by a macromolecular density matrix P [19-22]. These
grams pioneered by Pople and coworkers [24], has taken mawgthods are discussed briefly in the next section.

years by a large number of computationiagmists. Hese

computer programs are among the major achievements of

modern theoretical chemistry. . - -

In an LCAO (linear combinations of atomic orbitals) repgi(::‘t:éi’ fl::'rzzt{‘eELic::"taI:;':‘sTf' ;r:cgr:':‘:::::::rml:bn
resentation of the molecular wavefunctiénthe actual com- lectron densiti : th lecul ti
putation involves the determination of the relative contrip§rectron densities and other molecular properties
tions of various atomic orbitals to the molecular wavefunction
) Recently, a family of new techniques has been introduced

If n is the total number of atomic orbitals, if r denotes tHe@sed on the additive, fuzzy density fragmentation (AFDF)
three-dimensional position vector variable, and if one denoBsticiple of molecular electrodensities. The origal ver-
the i-th atomic orbital by, (r) (i = 1,2,...,n), then the sep{r)}  sion of these AFDF approaches, motivated by the early atomic
of functions is the molecular basis set for the given expdfarge computation scheme of Mulliken, and called the
sion of the molecular wavefunctiof. The relative weights Mulliken-Mezey approach [19], is the basis of the numerical
of the contributions of the various basis functions determilfiolecular Electron Density Loge Assembler (MEDLA)
the so-called density matrix P. Within the LCAO frameworkpethod of Walkerand Mezey [16-18] and the Adjustable
most molecular properties can be calculated from the d&gnsity Matrix Assembler method of Mezg$9-21]. The
sity matrix P, and most of the chemically relevant inform&FDF approach has been applied for a variety of large mol-
tion present in the molecular wefunction WY can also be ecules, including proteins [16'18,21], and is also extended to
represented by the density matrix P. the computation of macromolecular forces [22], that is, to

Using the density matrix and the molecular basis 8¢ computation of the forces acting on individual nuclei
{$,(N}, an important property, the electronic dengiy) of within a macromolecule controlling both local vibrations and

the molecule can be computed at any location r by the sganformational motions, such as protein folding [22].
ple formula The general description of the essence of the AFDF scheme

can be given using the concept of membership functions of
_ Z nuclei within various molecular fragments. For this purpose,
p(r) = Z Z Pypi(r)g,(r) (2) the family of all nuclei of the given molecule is subdivided
=LA into m mutually exclusive groups,

n

Since the actual shape of the molecule is in fact the shape, . .. f ... 3)
of the fuzzy electron density cloud, the computed electronic
density has a primary role in molecular shape analysis, &2@h such group, bf atomic nuclei serving as a set of ,an-
the fuzzy ,body* of the electronic charge distribution is welhor points* for a fuzzy electron densji(r) contribution of
described by the functiop(r). the corresponding fuzzy fragmeng, Fone electron density

The computational approach of the standard quantyiifction of a fragment for each of the m groups of nuclei:
chemistry molecular orbital framework, well represented by

the programs included in the GAUSSIAN system [24], is sUB(r), p2(r), . . . ,p (), . . . p™(r) 4)
able for the study of relatively small molecules. When using
suchab initio computer programs, however, one faces seve{gq
difficulties if large molecules are the subjects of studies.

The usual implementation of tla initio method forthe g ¢ F  E (5)
generation of molecular wavefunctions suffers from a serit 2 """ ¥ m
ous limitation: as the size of the molecules increases, F@%pectively.
computer time requirements eventually grow with the fourth ¢ m,(i) denotes the membership function of atomic or-
power of the molecular size (the number of electrons). Rgfa ¢ (1) in the set of orbitals centered on a nucleus of nu-

example, the computation of five times as large molecyg.a sybfamily f of electron density fragment, Fwhere
requires 5, that is, 625 times more computer time. This rapid
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1 if the atomic orbitalp,(r) is centered guestion to raise: how much information is present in the

m,(i) = on any one of the nuclei of subfamily f electron density of local functional groups, or in more gen-
eral terms, can one deduce conclusions concerning the com-

0 otherwise, (6) plete molecule if one studies only a local molecular moiety,

such as a molecular fragment?
then the nx n AFDF density matrix Pfor the k-th electron A simple and perhaps surprising answer to this question
density fragment fFof the Mulliken-Mezey fuzzy fragmen-is provided by a recently proven theorem, the Holographic
tation method is defined in terms of the matrix elemehjts [ElectronDensity Theorenj27]. Some of the consequences

as of this theorem have fairly fundamental implications for
molecular modeling [27-30]. According to this theorem, any
Pkij = 0.5 [m(i)+ m()] P, (7) small, positive volume local region of a complete,

boundarylesselectron density cloud of a molecule (in a
More general fragmentation schemes have also been p@idegenerate electronic ground state) contains the complete
posed [19] that can be expressed in terms of the member#ifigrmation about the entire electron density, hence, any such

function of Eqg. (6) as local region of the electron density cloud completely deter-
mines all molecular properties [27]. This theorem represents
pkij = [m () w; + m() w;] P, (8) animprovement on the Hohenberg-Kohn theorem [13], since

there is no need for the complete electron density to deter-
In the general expression of equation (8), the weightifijne the molecular energy and other properties, already a

factors vy and vy are constrained: small piece of the electron density cloud is sufficient [27].
In other words, molecular fragments, such as individual
Wy +w =1 (9) functional groups are always influenced in a significant way
by the rest of the molecule, to such an extent that the induced
This condition is required for additivity. local changes in the fragment are fully characteristic to the
In the case of the original and simplest Mu||iken_Mezéyolecule they belong, and the entire molecular information
AFDF scheme, one takes is contained within the fragment!
This result has fundamental implications in the context of
w, =W, =05 (10) molecular modeling involving a series of molecules with simi-

lar pharmacological activity. The holographic electron den-
The AFDF scheme, briefly outlined above, provided tifiy theorem provides assurances that by studying local mo-

first method that could be applied successtully for the caldgeular regions, even regions that are perhaps not directly

lation of ab initio quality electron densities of natural prodinvolved in a major way with the given type of pharmaco-

ucts including taxol, and macromolecules such as prote'i?u%ica| activi'ty, it should be possible, at least in principle, to
[16-22]. find correlations between local features of the electron den-

sity clouds and the experimentally determined descriptors of
the pharmacologically relevant biochemical processes [28,30].

A theorem on the information content of molecular
fragments and the ,holographic“ property of molecular
electron density clouds

Shape analysis and similarity measures of molecular
electron density clouds

In molecular modeling, the information content of various o
molecular models is an important, limiting aspect Cbar'%olecular similarity is a fundamental concept of central role

very little useful result can be hoped from an oversimplifidd computer aided drug design [5-11,31-50]. The analysis of
model of poor information content. The molecular formulg!obal and local shape of the electron density clouds can re-
and even the stereochemical structural formula of molecuY§&! important clues concerning a variety of molecular prop-
can be characterized by a very limited set of numbers (f§H€S- Specifically, the global and local similarity of mol-
example, by 3N nuclear coordinated for a molecule of N rfgules can be expressed and numerically characterized by
clei), and it is, perhaps, too optimistic to hope that sucHPLecisely pleflned shape-.5|mllar|ty measures based on the
small set of numbers could efficiently convey the very corfathematical representation of computed molecular electron

plex nature and behavior of molecules involved in pharnfi€nsities [7-9,11]. , _
ceutical activity. Whereas the nuclear arrangement of mol- The detailed computer representations of electronic charge

ecules provides a very useful insight, and in a complex m4gnsities, now available for both small and large molecules,

ner implies strong constraints on the electron density, neydi2vide a systematic framework for modeling and understand-
theless, it is clear that it is the molecular electron densigg molecular behavior. These computational methods serve
a

cloud that provides the complete information. a set of versatile tools for the determination of correla-

However, one may approach the problem of moleculiPns between well-defined electron density shape features
information from a different perspective, and there is a vafigt@ined by computations and the experimentally measured
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levels of some specified biochemical activity. If such corr&amily f, from the rest of the nuclei of the molecule. One
lations are determined and verified, then electron densityay regard the regions within this MIDCO G(K,a) of func-

shape analysis can be used not only in an interpretative Wwagial group electron density as the extent of "limited au-
but also in a predictive sense. By computing and analyzilogomy” of the given functional group within the molecule

the relevant shape features of the electron densities of aMe-

ries of potentially active molecules, even if these moleculesSuch a limited autonomy and separate identity of func-
have never been synthesized, one is able to use such cortielaal groups within molecules are well reflected in this defi-
tions for estimating their levels of biochemical activity.  nition, and the same principle of MIDCO analysis can be

Whereas such theoretical predictions are certainly ragiplied to the limited autonomy and identity of two mol-
expected to replace eventual experiments, and usually semaes placed next to each other. If two different molecules
only as guidelines, nevertheless, by identifying promisirege placed within a short distance of one another, then the
candidates within the series of new molecules, and alsodxstence of some MIDCOs separating the nuclei of the two
identifying those molecules which are very unlikely to shomiolecules indicate the autonomy and separate identity of these
significant levels of activities, the electron density basedblecules. Viien comparing molecule pairs in close prox-
screening is a powerful selection tool. Indeed, the numbeiirafty and functional groups within a single molecule, an
molecules that are suggested for the eventual, often raihgrortant difference is the actual range of values for the den-
expensive synthesis and subsequent experimental testssignthresholds along the relevant MIDCOs, which are usu-
be reduced substantially. ally much smaller for two separate molecules.

Among the molecular shape analysis techniques, thoseOne advantage of this quantum chemical definition of func-
relying on the molecular electron density are of special stgnal groups is the fact that the objects so defined are fully
nificance. The formal description of the topological shapketermined by the electron density itself, and the definition
group methods (SGMs), as applied to the shape characteriiees not involve unreliable chemical intuition or individual
tion and shape similarity analysis of molecular electron debias.
sity clouds has been the subject of several detailed reviewsThe actual values of the thresholds a, which correspond
[11,44-47]. Here we shall describe only a short summarytofMIDCOs of functional groups, usually fall within a lim-
the methodology. ited range of electron density. This range is called the "Func-

The starting point of such analysis is the computation tidnal Group Range”, and several properties associated with
electron densities of the given molecules for a family of rehis density range have been studied [11].
evant nuclear arrangements. If for one such conformation theThe essence of the topological shape analysis method of
nuclear arrangement (or, as it is often called, the nuclear comlecular electron densities, called the Shape Group Method,
figuration) of a molecule M is denoted by K, and if an ele&GM, is the evaluation of local curvature properties of
tron density threshold a is specifietthen a molecular MIDCOs in order to characterize and classify shape [11]. In
isodensity contoutMIDCO G(K,a) of M is, by definition, fact, the Shape Group Method is a general topological shape
the collection of all those points r of the three-dimensiorahalysis technique of any almost everywhere continuously
space where the electron dengifiK,r) of the molecule M of differentiable three-dimensional function; in the case of mol-
the given conformation K is equal to the selected threshelcules, SGM is applied to complete, three-dimensional fuzzy

value a: molecular electron densities.
Whereas the general SGM method involves some of the
GK,a)={r:pK,r)=a} (11) special methods of topology [11], the main ideas of the method

can be described in simple terms. In the application of SGM
For each such MIDCO, the assdeidensity domain to molecular electron detties p(K,r), the local curvatures
DD(K,a) is defined as the collection of all points r of thef a range of MIDCOs G(a) are compared to a range of refer-
three-dimensional space where the electron depéity) of ence curvatures b.
the selected molecule M is greater than or equal to the threshThe algorithm of topological shape description using the

old a: simplest SGM approach consists of several steps:
(i) A range of electron density thresholds a and a range
DD(K,a) ={r:pK,r)=a} (12) of reference curvature values b are selected.

(i) For each MIDCO G(K,a) of density threshold a within

In fact, the MIDCO G(K,a) is the actual boundary surfadge specified range, G(K,a) is partitioned into local curvature
of the corresponding density domain DD(K,a). domains relative to each reference curvature b within the

Density domains and MIDCO surfaces provide a simpt@rresponding range.
quantum chemical definition for local molecular moieties In order to generate this partitioning, the local curvature
usually involved in a given type of chemicaaction. Ac- ateach point r of the MIDCO surface G(K,a) is characterized
cording to this definition, an additive fuzzy electron densilly a local curvature matrix called the local Hessian matrix,
fragment (AFDF) associated with a family of nuclgii$ by by comparing the local canonical curvatures (the eigenvalues
definition aquantum chemical functional groiig6,48,50] if of the local Hessian matrices) at each point r to the reference
there exists some density threshold value a such that a MID@@vature b. Each point r of G(K,a) is assigned to either a
G(K,a) of the given density threshold separates this nucl&fb), or a Q(b), or a D(b) curvature domain, if none, or
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one, or two (respectively) of the eigenvalues of the local Hesribed by various (a,b)-maps. In most practical applications,
sian matrix at point r are smaller than the curvature paratinese maps can be formulated as matrices: the shape matri-
eter b. In practical computations, only a finite number of (a&3s M2b are discretized versions of (a,b)-maps correspond-
pairs of values are considered. ing to the cases where only a finite number of thresholds are
Note that the three types of local curvature domaig&)D considered, for example, if density threshold values a and
D,(b) or D,(b), indicate whether the MIDCO G(K,a) is conn, reference curvature values b are used.
vex, concave, or of the saddle type, respectively, relative toThe shape matrices ® can be regarded as numerical
the actual curvature b. shape codes for the molecules, where the matrix elements
(iif) The step of curvature domain identification is folc€an be listed either in the original matrix form or as a vector.
lowed by a truncation of MIDCO surfaces for each (a,b) p&ince the total number of elements in the shape code matrix
of parameters by removing all curvature domaingl) of a M@bis
specified typau (in most application the type= 2) from the
MIDCO G(K,a). Note that a truncated surface G(K,a,u) is= nn, (13)
obtained for each (a,b) pair.
An important aspect of the method is the fact that for tiiee corresponding shape vector is also t-dimensional.
whole range of parameter values a and b of each moleculeBy applying the same Shape Group Method to fuzzy mo-
M, only a finite number of topologically different truncatedecular electron density fragments, to the AFDF components
surfaces are obtained. (This holds in all except some degsfnmolecular electron densities, the local shape analysis can
erate cases.) reveal important trends which often correlate with biochemi-
(iv) The next step is the determination of $h@pe groups cal activity. An essential aspect of the SGM and related ap-
of the molecular electron density, that is, the zero-, one-, @ndaches is the fact that they are equally applicable to the
two-dimensional algebraic homology groups of the truncatffrzy electron density clouds of complete molecules and to
MIDCO surfaces. In molecular electron density analysis lwcal, fuzzy electron density fragments, hence these methods
three dimensions based on two-dimensional MIDCO surfacas suitable for "zooming in” to the biochemically relevant
there is one family of shape groups for each of these dimkyeal regions of molecules.
sions of zero, one, and two, that is, there are three types ofhe shape codes, once determined, can be used for shape
shape groups, one for each of the dimensions zero, one,a@mmparisons between molecules, or between molecular frag-
two. The zero-, one-, and two-dimensional shape groups ments. A new comparison does not require the recalculation
denoted by ¥, (a,b), Hu (a,b), and K, (a,b), respectively, of the shape groups of a molecule or molecular fragment al-
where the letter H refers to the fact that these groups arertiely determined; for each new comparison only the shape
homology groups of truncated MIDCO surfaces. In thesedes are used and compared, that results in considerable
notations, the dimensions 0, 1, and 2, the truncation ftypesavings of computer time. The shape codes of molecules and
the electron density threshold a, and the reference curvatatgecular fragments can be stored in various data banks and
parameter b are also specified. One should note that witfdrused when needed.
each topological equivalence class of these surfaces, the shapkhe comparison of shape codes can be formalized in terms
groups are topological invariants, implying that these grougpfsnumerical similarity measures.
convey some essential information about the topology of For any two molecules or moleculardraents A and B,
molecular shape. the quantity m[MpB)A M@D)H is defined as the number of
(v) In the next step simple, numerical descriptors of tieatches between corresponding elements in the two shape
Shape Groups are determined. The shape groups themselvee matrices 24 and Mab)B, of objects A and B, respec-
can be characterized by numbers and among these numibasty.

the Betti numbers are of special importance. The shape-similarity measure s(A,B) defined as
The zero-, one-, and two-dimensional Betti numbers are
the ranks of the zero-, one-, and two-dimensional homologia B) = m[M@DA M@b).§ / t (14)

groups, H, (a,b), H, (a,b), and B, (a,b), respectively. The

Betti numbers associated with the shape groups are denelgslesses the similarity of the shapes of the two fuzzy elec-
by I, (a,b), B, (a,b), and B, (a,b), where, similarly to the tron density clouds A and B. Note that, in most applications
shape groups, the dimensions 0, 1, and 2, the two parametgisange of parameters a and b stretches over several orders
a and b, as well as the trutioa type p are specified. The of magnitudes and in such cases a logarithmic representation
Betti numbers generate a set of numerical shape descripfig(a),log(b)) is used for the maps of these parameters [11].
for the entire range of MIDCOs G(K,a) of the given mol- |t has been shown [11] that as a consequence of the nature

ecule M (of a specific nuclear conformation K). of parameters a and b in the shape map representations, local
(vi) The final step is the construction of a numerical shagRape complementarity can also be evaluated using essen-
code from the computed Betti numbers. tially the same methodology. If the shape map (a,b) of one

In a typical application of the Shape Groups, the distribgbject, say object A is centrally inverted, resulting in a shape
tion of various values of Betti number’% I6a,b) as a function map (a*,b*), then the formal shape similarity measure
of the density threshold a and curvature parameter b is de-

S*(A,B) = m[M@P)A, M@bg [ t (15)
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